
Slow Learning with Backprop

on Nonstationary Tasks

Abstract

Backprop has been greatly successful at training artificial neural net-
works (ANNs) for a single data distribution. However, we show that
backprop’s ability to adapt ANNs for an abruptly changing data distribu-
tion can be quick for early data distributions but then become poor to the
point where using a fixed random representation ANN would have led to
much lower estimation errors or only slightly higher estimation errors. We
attribute backprop’s extremely poor performance to backprop’s sensitiv-
ity to its initialization phase, which initializes features with small, random
weights. To modify backprop for tasks where ANNs must be continually
updated, we use continual backprop: a version of backprop that regularly
replaces some of the ANN’s features with new features that have small,
random weights. This simple and cheap modification led to large perfor-
mance gains and showed that injecting small, random weights throughout
the task can be beneficial for backprop’s ability to continually adapt.

1 Introduction

Recently, there have been many papers that have focused on modifying backprop
for continual supervised learning tasks. A continual supervised learning task is
a supervised learning task where the learner can expect to experience arbitrarily
many data distributions but does not have access to past data. To be successful
on continual supervised learning tasks, the learner should be able to retain useful
knowledge from the past and quickly adapt to new situations. These tasks
are considered nonstationary, since the data distribution changes. McCloskey
and McCohen (1989) pointed out that backprop can experience catastrophic
interference, a sudden and large performance decrease on past distributions,
and many papers, including an influx of recent papers, have been dedicated
to avoid backprop’s catastrophic interference by modifying backprop (Fahlman
and Lebiere, 1989; French, 1999; Aljundi et al., 2019; Kirkpatrick et al., 2017;
Yoon et al., 2018; Golkar et al., 2019; Rajasegaran et al., 2019; Rolnick et al.,
2019).

However, a more overlooked observation about backprop is that its ability
to adapt artificial neural networks (ANNs) to new distributions can decrease
when it is learning from a sequence of data distributions. Sutton (2014) pre-
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sented the unpublished results of Mahmood that used a nonstationary MNIST
task where the data distribution changes periodically and abruptly. They found
the classification error at the end of each data distribution increased over dis-
tributions. A similar demonstration was done by Mart́ınez-Rego et al. (2011)
who showed that 1-layer ANNs that update with a form of backprop can have
a slower learning speed on later sample distributions compared to the learning
speed on earlier sample distributions. More generally, Fahlman (1988) noted
that backprop can slow in learning from new samples as the derivative of the
activation functions go to zero.

Backprop’s slower learning on new sample distributions has yet to be estab-
lished as problematic, so we contribute a clear demonstration of the surprisingly
poor learning performance of backprop on new data distributions. To ensure
transparency in the demonstration, we used a generic nonstationary supervised
learning task called the generic continual feature discovery (GCFD) task where
the data distribution changes abruptly and periodically. The task is online,
meaning the learner receives one sample at a time. Independent of the choice of
tanh, logistic, ReLU, or SoftSign activation function, backprop learned ANNs
that yielded low estimation error on early data distributions. However, depend-
ing on the choice of activation function, the ANNs learned by backprop for later
data distributions yielded higher or only slightly lower estimation errors than
the estimation errors of an ANN with a fixed random representation. This high
estimation error after learning with backprop showed backprop’s poor ability to
continually learn useful ANN weights for new data distributions.

We attribute the extremely poor learning ability of backprop on new data dis-
tributions to backprop’s sensitivity to its initialization phase. Backprop consists
of two phases: initialization of the ANN’s representation with small, random
numbers, and using stochastic gradient descent with data. It has been estab-
lished that initializing ANNs properly is crucial to fast learning with backprop
(Thimm and Fiesler, 1997; Glorot and Bengio, 2010; He et al., 2015). How-
ever, Schwarz et al. (2018) noted that backprop should reinitialize the ANN’s
weights when it encounters a different data distribution, otherwise backprop
can be slow to learn from that distribution. This means, after learning on data
distributions, backprop can lose properties from initialization that would have
improved its learning ability. We find a similar result with out experiments.

To preserve the benefits of the initialization phase when learning from new
sample distributions, other works have proposed modifications for backprop
that introduce small, random weights during learning. Like Schwarz et al.
(2018), many works assume the learner is informed of when the data distri-
bution changes, and they choose to add multiple new features to learn new data
distributions (Yoon et al., 2018, Rusu et al., 2016). Special knowledge of a
distribution shift was not required from backprop initially. Cascade correlation
networks increase the size of the ANN one feature at a time and use stochastic
gradient descent to only update the newest feature (Fahlman and Lebiere, 1989;
Fu et al., 1996). In a continual learning task, using an unbounded and increas-
ing amount of memory can be problematic since the task is arbitrarily long.
Also, backprop did not require an unbounded amount of memory to begin with.
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Zhou et al. (2012) presents an algorithm to learn the optimal size of the ANN by
adding and removing features, but requires an unspecified amount of memory.
Evci et al. (2019) showed that generating random weights while removing low
magnitude weights can eventually lead to a performant sparse network. How-
ever, they were motivated to reduce the memory usage and computation of a
fully connected network rather than improve the learning speed of backprop on
new sample distributions.

To avoid the extremely poor learning ability of backprop on the GCFD task
while maintaining the cheap computation and fixed memory usage of back-
prop, we propose the use of continual backprop, which regularly injects small,
random weights into the ANN alongside backprop. We call it “continual back-
prop” because it augments backprop to be suitable for learning continually in
nonstationary supervised learning tasks without modifying backprop too much.
By regularly replacing some features in the ANN with new features that have
small, random weights throughout the learning process, we can potentially im-
prove backprop’s performance on new data distributions since these introduced
features are known to be useful for learning new distributions. To replace fea-
tures in a disciplined manner, we use generate-and-test algorithms. At a high
level, generate-and-test algorithms replace the least useful parts of a learnable
function with potentially more useful parts, and have been used on various
applications including for learning Boolean functions (Kaelbling, 1990), rule-
based classifiers (Booker et al., 1989), and ANN representations (Mahmood and
Sutton, 2013). For ANN representations, generate-and-test algorithms replace
the least useful features. Mahmood and Sutton (2013) demonstrated that using
generate-and-test algorithms alongside backprop can lead to faster learning than
with backprop alone on a stationary supervised learning task. However, they
did not establish results on nonstationary supervised learning tasks. Dohare
(2020) presented results showing that continual backprop is quicker to adapt
ANNs to a gradually changing input distribution compared to backprop.

2 Background

An online supervised learning task provides a stream of examples to the learner.
Each example contains an input i ∈ Rn, where n ∈ N is the size of the input,
and a target t. Since we are focused on regression tasks, t is a scalar. The
target is calculated by a target function that is given the input i. The target
function can be a human noting the targets or a defined function, and it can
change during the task.

For each example, the learner is first provided the example’s input. The
learner then returns an estimate of the example’s target. The error between the
learner’s estimate and the example’s target is recorded for the results, and then
the learner is provided the example’s target to adapt its estimates for future
examples.

The learners we focus on are two-layer artificial neural networks (ANNs).
These ANNs have a representation that consists of m ∈ N features. A feature is
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a function that summarizes the input signals into a scalar. The representation
takes in an example’s input i ∈ Rn and outputs the representation’s summary
f ∈ Rm. The kth feature’s output, fk ∈ R, is the kth entry of f and is calculated
with the expression fk = σ (i ·wk) where σ is a scalar to scalar function known
as the activation function, and wk ∈ Rn is the kth feature’s input weights.

The final estimate e of the ANN given an example’s input i is calculated
using the output layer’s weight vector wo ∈ Rm, representation’s summary f ,
and the expression e = wo · f .

To use backprop to learn the ANN weights, the features are initialized with
small, random weights. Then, to update with each example’s input i and target
t, backprop uses the stochastic gradient descent updates:

wk ← wk + αr
∂(t− e)2

∂wk
for the kth feature, and

wo ← wo + 2αo
∂(t− e)2

∂wo

where αr ∈ R+ is the representation’s step size and the αo ∈ R+ is the output
layer’s step size.

Backprop has been found to be sensitive to its initialization phase. Initializ-
ing features with random weights ensures the independently updated features do
not remain uniform, but also provides a level of feature diversity that can speed
up learning with backprop. Feature diversity includes number of features and
how different the features are from one another. Increasing these two aspects
of feature diversity have been found to increase the learning speed of backprop
(Nguyen and Widrow, 1990; Denoeux and Lengellé, 1993). Initializing features
with small weights has also been found to improve the learning speed of back-
prop for ANNs with logistic activation functions (Thimm and Fiesler, 1997) and
is key for specialized initialization schemes that speed up learning (Glorot and
Bengio, 2010; He et al., 2015).

3 The Generic Continual Feature Discovery Task

To test algorithms for their ability to continually adapt ANNs for new data
distributions, we use the Generic Continual Feature Discovery (GCFD) task.
The GCFD task is a nonstationary online supervised learning task that changes
the data distribution every λ ∈ N examples. Each example is composed of an
input i that is a randomly sampled binary vector and a target t = f(i) where f
is the target function.

The target function f is a randomly initialized 2-layer ANN with all weights
equiprobably −1 or 1. The features in the target function are called target
features. The activation function of the target features output 1 or 0, and
are known as linear threshold functions. When the input into the activation
function is greater than or equal to a set threshold, the activation function
outputs 1. Otherwise, the activation function outputs 0. The threshold βk
of the kth feature’s activation function is determined by the expression βk =

4



(# of -1’s in wk) + νm. Each feature that uses the above activation function is
known as a linear threshold unit (LTU), and ν ∈ [0, 1] is a settable parameter
(Sutton and Whitehead, 1993). Since the inputs are binary and the network’s
weights are -1 and 1, the LTU outputs 1 when at least ν proportion of the -1 and
1 pattern of the LTU’s input weight vector corresponds to the 0 and 1 pattern
of the input vector.

If the target features output one too infrequently (e.g. the target features
only output 0) or too frequently (e.g. the target features only output 1), the
learning task can become too simple. In our experiments we use size-7 inputs
and 2 target features in the target function. With a size-7 input, the probability
a target feature outputs one with a random binary input vector is ∼0.226 (see
Appendix for calculation). With two target features, this makes the probability
at least one LTU outputs one for a random binary input vector approximately
1− (1− 0.227)2 = 0.40.

We divide the GCFD task into subtasks. A subtask of the GCFD task is
an interval of λ ∈ N examples where the data distribution is unchanged. The
learner is never explicitly notified when the subtask switches or the regularity
of the switches. In the literature, it is common to find what we call “subtasks”
called “tasks” (Farquhar and Gal, 2018; Diaz-Rodriguez et al., 2018). We devi-
ate from this nomenclature since we consider the GCFD task a single task with
a changing data distribution.

The task challenges the learner to quickly learn from each new data distri-
bution. With two target features and size-7 inputs, a given target feature is ex-
pected to repeat every 64 subtasks (see Appendix for calculation), which makes
the target functions diverse. At the beginning of each subtask, the learner’s es-
timation error is expected to shoot up as the learner is unprepared for this new
subtask. If the interval λ is long enough for the learner to see every example
in the subtask interval, the learner can ideally learn to account for each of the
examples and end the subtask with zero error. This task does not include noise
or other forms of irreducible error, so zero error can be achieved by the end of
each subtask.

4 Backprop on the GCFD Task

In this section we present the results of our experiment that uses the generic
continual feature discovery (GCFD) task to evaluate backprop’s ability to adapt
ANNs for each data distribution in a sequence. We used various activation
functions with the ANNs to test how the choice of activation function affects
the learning performance of backprop.

4.1 Task

In this GCFD task, the target function has two target features, and the in-
puts are of size 7. Each subtask is 15,000 examples long, which provides the
learner 15, 000/128 ≈117 of each of the 128 input configurations in expectation
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per subtask. The learner must learn to estimate targets for a total of 4,000
subtasks. This long length gives a sample of a learner’s performance on a task
with arbitrarily many data distribution changes.

4.2 Learners

The learners were 2-layer artificial neural networks (ANNs) updated with back-
prop. Backprop initialized the features with a zero-centered normal distribution
with variance 0.01. We found the performance of backprop to be insensitive to
various small variances. Each ANN had either 15 or 40 features. Each ANN had
logistic, tanh, ReLU, or SoftSign activation functions. Every backprop trained
ANN was compared to a version of it that had a fixed representation i.e. αr = 0.

To select the representation step size αr and the output layer step size αo

for backprop, we evaluated the step size choices on a shorter GCFD task. The
shorter GCFD task has 30 subtasks (450,000 examples) but all other properties
the same as the longer GCFD task. For each learner, we used the step sizes
that had the lowest average error over the last 1,000 examples and over 20
independent runs on the shorter GCFD task. We used this shorter task to
use less computation in the step-size parameter search, while still choosing step
sizes that can perform well on some distribution changes. Also, there is no set
operation time for a learner that needs to continually learn, so the goal was not
to optimize the step size for the specific 4,000th subtask. The step-size parameter
search was over the following possibilities: αo ∈ {0.00625/N, 0.0125/N, 0.025/N,
0.05/N, 0.1/N, 0.2/N, 0.4/N, 0.8/N, 1.6/N, 3.2/N}, where N is the number of
features, and αr ∈ {0.0, 0.0015625, 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2,
0.4, 0.8, 1.6, 3.2}.

4.3 Evaluation Metrics

To measure backprop’s effectiveness in learning from new data distributions,
we looked at the error at the end of each subtask and the mean squared errors
during subtasks 100, 1000, 4000. The subtask final error (SFE) is the average
error of the last 1,000 examples of the subtask. The SFE gives a measure of
how effectively the learners learned weights for a subtask.

We wished to monitor how two properties set by the initialization phase of
backprop changed during the task: the activation function derivatives, and the
number of features that are useful for learning with.

We monitored how the activation function derivatives changed by measur-
ing the product of the average activation function derivative (which changes)
and the representation’s step size (which is constant) at the beginning of each
subtask. It is difficult to directly compare the activation function derivatives of
different types of activation functions, since the representation step size scales
up the derivative. Together, both scale up how much the weights are changed
by stochastic gradient descent updates.

We monitored how many features were no longer useful for learning by mea-
suring the proportion of calcified features in the ANN. A feature is considered
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calcified when it is slow to update. Specifically, we define a feature as calcified
when the product of the activation function derivative and representation step
size is less than 0.0001 when averaged across the input space.

4.4 Results

We refer to the ANNs that update with backprop by their activation function
(e.g. ReLU ANNs) and explicitly note if we are referring to the fixed represen-
tation version.

The chosen step sizes used for backprop fell between the extremes of the
search ranges (Appendix). For each squashing activation function: SoftSign,
logistic, and tanh, the 40-feature ANN had a larger representation step size
than the representation step size of the 15-feature ANN.

For each ANN, the rate the mean squared errors decreased differed across
subtasks. With the exception of the SoftSign ANNs, there were noticeably
higher errors throughout the 1000th and 4000th subtasks compared to those on
the earlier subtasks (Figure 1). For all ANNs, the mean squared error decrease
on the 1,000th subtask was similar to the mean squared error decrease on 4,000th

subtask.

Figure 1: These plots show the mean squared errors from subtasks 100, 1,000,
and 4,000 for size-40 ANNs. Each black bar represents one standard error
determined by 50 independent runs, and they are plotted every 500 subtasks.
There were higher MSEs on later subtasks. A similar trend occurred with the
size-15 ANN results.

The fixed representation ANNs had SFEs around 0.15 or greater for each
subtask (Figure 2).

The SFEs of the ReLU ANNs greatly increased over subtasks (Figure 2).
On early subtasks, the ReLU ANNs had much lower SFEs than those from the
fixed representation ANNs. However, after a few hundred subtasks, the ReLU
ANNs had much higher SFEs than those from the fixed representation ANNs.
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Figure 2: The dark-colored bars represent one standard error over 50 indepen-
dent runs and are shown every 400 subtasks. The SFEs increased over subtasks
with backprop.

The SFEs of the ReLU ANNs were approximately between 0.3 and 0.4 for all
later subtasks.

On earlier subtasks, the SFEs of the logistic and tanh ANNs were sig-
nificantly lower than the SFEs of the fixed representation ANNs (Figure 2).
Then, the SFEs increased significantly within a few hundred subtasks to be-
come slightly lower than the SFEs of the fixed representation ANNs.

There was an increase in SFEs over subtasks with the SoftSign ANNs, but
the SFEs on later subtasks remained around or lower than 0.05 (Figure 2).

The average product of the activation function derivative and the represen-
tation step size at the beginning of subtasks steeply decreased with all ANNs
(Figure 3). The average product went to zero with ReLU activation functions,
which indicates all the ReLU features were outputting zero, and only the out-
put bias weight was being updated. The average product decreased by multiple
orders of magnitude with the logistic and tanh activation functions, and the
average product decreased the least with the SoftSign activation function. Like
the SFEs, the average product at the beginning of subtasks changed mostly
during early subtasks.

The proportion of calcified features at the beginning of subtasks increased
for all ANNs except for the SoftSign ANNs (Figure 4). The SoftSign ANNs
had no calcified features at the beginning of each subtask. The ReLU ANNs
had only calcified features at the beginning of all later subtasks. The tanh and
logistic activation function ANNs had an increase in calcified features at the
beginning of early subtasks, but the increase was far less dramatic than the
increase with the ReLU ANNs.

4.5 Experiment Conclusions

Based on the increase in SFEs over subtasks, we say backprop learned worse
ANN weights on later subtasks compared to those from earlier subtasks. On
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Figure 3: The two left plots are log scaled for all points above 10−4 and are lin-
early scaled for all points below. The light-colored bars represent one standard
error over 50 independent runs, and they are plotted every 100 subtasks. The
average product decreased rapidly over subtasks.

Figure 4: These points are plotted every 50th subtask. The black bars represent
one standard error determined by 50 independent runs. The SoftSign ANNs
(not shown) had zero calcified features at the beginning of each subtask.

later subtasks, backprop formed a representation that only output zero for
the ReLU ANNs, which led to worse estimation performance than the ANNs
with a fixed random representation. With logistic and tanh ANNs, backprop
learned weights that had better performance than the fixed random represen-
tation ANNs but not by much. Finally, backprop learned the best performing
ANNs with SoftSign ANNs as they had much lower SFEs on the task than the
fixed random representation ANNs.

The decrease in the average activation function derivative at the beginning
of subtasks and the increase in calcified features at the beginning of subtasks
appeared to affect the learning ability of backprop. The initialization phase
of backprop initialized the average activation function derivatives to some rel-
atively high level and began all ANNs with no calcified features. But, at the
beginning of later subtasks these properties were less present. The SoftSign
ANNs had the least change in these properties at the beginning of subtasks and
performed the best in terms of learning each data distribution quickly. The
ReLU ANNs had the most dramatic loss of these properties at the beginning of
subtasks and also had the poorest learning performance. The tanh and logistic
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ANNs were middling in how much the properties were preserved and middling
in terms of their learning performance.

Overall, backprop can have extremely poor learning performance when the
data distribution changes, but its performance depends on the choice of the
activation function. When learning later distributions, backprop did not appear
to preserve the properties from its initialization phase that could have improved
its learning performance. Introducing properties from the initialization phase of
backprop throughout the task could help remedy the poor learning performance
on later subtasks, and it is this solution we explore in the next experiment.

5 Continual Backprop on the GCFD Task

Knowing the poor learning performance of backprop on later subtasks of the
GCFD task, we sought out an algorithm that can reliably adapt an ANN for
all subtasks. Since backprop’s initialization phase, which sets all features with
small, random weights, is crucial for learning from a distribution quickly, we
chose to evaluate versions of backprop that regularly introduce features with
small, random weights. These versions of backprop are known as continual
backprop algorithms.

5.1 Continual Backprop

Like backprop, a continual backprop algorithm initializes the features with
small, random weights, and then uses stochastic gradient descent to update
the ANN weights with examples. Unlike backprop, after each stochastic gradi-
ent descent update, a generate-and-test update occurs. The generate-and-test
update is focused on replacing the least useful features with a potentially more
useful feature.

There are parameters that must be set for the generate-and-test updates.
The replacement rate ρ ∈ [0, 1] is the proportion of features to replace each
update. The features that are to be replaced are those that have the least utility
according to the tester. The features that replace the least utility features are
generated by the generator. If ρN < 1, where N is the number of features in
the ANN, ρN is the probability of replacing one feature on an update. In our
experiments, we set ρ to 0.0001. This ρ was not tuned and was chosen because
it is an infrequent replacement rate. With 15 features, a ρ of 0.0001 means 3
features are expected to be replaced over 2,000 examples.

The generator of our generate-and-test updates generates features with weights
sampled from a zero-centered normal distribution with a variance of 0.01. The
variance of 0.01 is the same used to initialize the random feature weights of an
ANN with backprop.

We try two different generate-and-test updates for continual backprop: ran-
dom generate and test and partial random replace. They differ in their testers.
Random generate and test determines the utility of a feature by the magnitude
of its output weight. This heuristic prefers retaining features with high absolute
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output weights since these features contribute more magnitude to an estimate
when activated (Mahmood and Sutton, 2013). Partial random replace’s tester
treats all features as equally useful, and hence, it always randomly chooses the
features to replace. Partial random replace is a baseline testing algorithm that
we used to test random generate and test’s tester.

Both generate-and-test updates are computationally cheap. To generate
features is cheap, and to find the lowest ρN output weight magnitudes of N
features in random generate and test can be done with O(N) computation.

5.2 Task

The task is the same GCFD task as the previous experiment. The target func-
tion has two target features, and the example inputs are of size 7. Each subtask
is 15,000 examples long, and there are a total of 4,000 subtasks.

5.3 Learners

Multiple ANN architectures were examined. Each architecture had either 15 or
40 features, and each had tanh, logistic, ReLU, or SoftSign activation functions.
These are the same ANNs tested in the previous experiment.

We compared five different algorithms: backprop; continual backprop that
uses partial random replace (BP+PRR); continual backprop that uses random
generate and test (BP+RGT); partial random replace (PRR); and random gen-
erate and test (RGT). The learning algorithms that include backprop updates
used the tuned step-size parameters from the previous experiment.

5.4 Evaluation Metrics

Our evaluation metrics were the same as the previous experiment and are mo-
tivated by the same reasons. For each combination of learning algorithm and
ANN, the average error of the last 1000 samples of each of the 4,000 subtasks
was measured. We call the average error of the last 1000 samples of a subtask
the subtask final error (SFE). We noted the performance on the 4, 000th sub-
task, the average product of activation function derivative and representation
step size at the beginning of subtasks, and the proportion of calcified features
at the beginning of subtasks.

5.5 Hypotheses

We expected the performance of RGT and PRR to be similar to the perfor-
mance of a fixed random representation, because the generate-and-test algo-
rithms on their own perform infrequent updates. We expected ANNs trained
with BP+RGT and BP+PRR to have a lower SFEs on later subtasks compared
to those trained with backprop, because of the above mentioned potential in-
teraction between backprop and the generate-and-test algorithms. We expected
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BP+RGT to perform better than BP+PRR since BP+PRR has a trivial heuris-
tic for judging a feature’s utility and may discard useful features more frequently.

5.6 Results

The mean squared errors were mostly lower on the last subtask when BP+PRR
or BP+RGT was used instead of backprop (Figure 5). For a given ANN, the
mean squared errors over subtasks formed a curve that tended to be thinner and
lower when BP+RGT or BP+PRR was used instead of backprop. However, with
the SoftSign ANNs, BP+PRR resulted in higher mean squared errors compared
to those from when backprop was used instead.

Figure 5: The mean squared errors on the last subtask for each size-40 ANN
is shown here. The black bars represent one standard error determined by 50
independent runs, and they are plotted every 500 subtasks. ANNs trained with
BP+RGT or BP+PRR tended to have lower error than backprop in most cases.

For almost all ANNs, the SFEs on later substasks were higher with backprop
than with a continual backprop algorithm (Figure 6). The exceptions to this
trend involved the SoftSign ANNs. Across all subtasks, the SoftSign ANNs
trained with BP+PRR had higher SFEs than the SFEs from when they were
trained with backprop. The SFEs of ReLU ANNs that learned with a continual
backprop algorithm do not significantly exceed the 0.15 threshold that marked
the performance of a fixed random representation. The logistic and tanh ANNs
when learning with a continual backprop algorithm had much lower SFEs than
those when learning with backprop.

For four ANNs, the SFEs on later subtasks with BP+RGT were higher
than or similar to the SFEs on later subtasks with BP+PRR: the 40-feature
logistic ANN, the 40-feature tanh ANN, and both ReLU ANNs (Figure 6).
This result was surprising as BP+PRR has a simpler tester than BP+RGT’s.
With the other ANNs, BP+RGT had lower SFEs than the SFEs when trained
with BP+PRR.
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Figure 6: The dark bars represent one standard error determined by 50 inde-
pendent runs, and they are plotted every 400 subtasks.

For a given learning algorithm and activation function, the SFEs on later
subtasks were typically smaller or similar with more features (Figure 6). There
were three exceptions to this trend: the tanh ANNs that updated with BP+RGT,
the logistic ANNs that updated with BP+RGT, and the ReLU ANNs that up-
dated with BP+RGT. On later subtasks, their 40-feature versions had higher
SFEs than the SFEs of their 15-feature versions.

The ANNs trained with BP+PRR had relatively stable SFEs over subtasks
compared to the SFEs of ANNs trained with backprop or BP+RGT (Figure 6).
With all activation functions, BP+PRR typically had stable SFEs less than or
around 0.1. However, ANNs that used backprop or BP+RGT had lower SFEs
on early subtasks compared to their SFEs on later subtasks and had SFEs that
exceeded 0.1 for some ANNs. The increase in SFEs occurred over early subtasks,
and the SFEs on later subtasks were relatively stable.

For a given ANN, using either BP+PRR or BP+RGT yielded higher average
products of activation function derivative and representation step size at the
beginning of subtasks (Figure 7) than those from when backprop was used.
BP+PRR consistently had the highest average products at the beginning of
subtasks.

ANNs that used BP+PRR or BP+RGT typically had fewer calcified features
at the beginning of subtasks than when they used backprop (Figure 8). SoftSign
ANNs had zero calcified features at the beginning of subtasks regardless of the
learning algorithm.

The average product of activation function derivative and representation step
size at the beginning of subtasks, and the proportion of calcified features at the
beginning of subtasks did not predict whether a learning algorithm had lower or
higher SFEs than another learning algorithm. The ranking of algorithms from
highest average product at the beginning of subtasks to lowest was: BP+PRR,
BP+RGT, and backprop (Figure 7). The ranking of algorithms from lowest
proportion of calcified features to highest was the same (Figure 8). However,
when it comes to ranking learning algorithms based on their SFEs, the algo-
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Figure 7: These results are for the 40-feature ANNs. The rightmost plot is
log-scaled above 10−4 and linear-scaled below. The light-colored bars represent
one standard error determined by 50 independent runs and are plotted every
100 subtasks.

Figure 8: These points are plotted every 50th subtask for 40-features ANNs.
The black bars represent one standard error determined by 50 independent
runs. The SoftSign ANNs (not shown) always had zero calcified features at the
beginning of subtasks.

rithms had different rankings depending on the size and the activation function
of the ANN.

Finally, we note the ANNs that trained with random generate and test on
its own (RGT) and partial random replace on its own (PRR) had SFEs near or
higher than those of the fixed-representation ANNs (Figure 9).

5.7 Experiment Conclusions

For most ANNs, updating with a continual backprop algorithm adapted ANNs
better for each data distribution than when they were updated with backprop,
as evidenced by the lower SFEs with a continual backprop algorithm compared
to those with backprop. With SoftSign ANNs, using BP+RGT led to near zero
SFEs on later subtasks, which was lower than the SFEs with backprop, but
using BP+PRR led to SFEs greater than those with backprop. For all other
ANNs, either continual backprop algorithm greatly improved the estimation
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Figure 9: The dark-colored bars represent one standard error determined by
50 runs, and they are plotted every 100 subtasks. For all ANNs (many not
shown), RGT and PRR had SFEs similar to or higher than those of the fixed
representation.

performance of the learned ANNs from when they were updated with back-
prop. The ReLU ANNs do not have catastrophically poor learning performance
with continual backprop algorithms, although the ReLU ANNs that learned
with BP+RGT performed similar to a fixed random representation. This poor
performance makes sense, since BP+RGT’s tester was not suited for ReLU
activation functions.

The interaction between the generate-and-test algorithms and backprop was
the reason for the fast discovery of useful features. On their own, the un-
tuned generate-and-test algorithms performed similarly or worse to a fixed-
representation ANN. Thus, when a generate-and-test algorithm was combined
with backprop, the additive effects of the individual algorithms were not as cru-
cial to the faster ANN adaptation as the interaction between the two learning
algorithms.

The continual backprop algorithms were more successful than backprop at
preserving the properties set by the initialization phase: the activation function
derivative at the beginning of subtasks and the proportion of calcified features at
the beginning of subtasks. BP+PRR led to the best preservation with near zero
calcified features at the beginning of subtasks and activation function deriva-
tives that began close to the point they were initially set to. However, how
an algorithm maintained the activation function derivatives and the proportion
of calcified features may come with poorer ANN adaptation as it did for the
SoftSign ANNs that used BP+PRR instead of backprop. These properties can
be beneficial to discovering useful features if introduced carefully.

Overall, backprop’s learning performance on subtasks was improved with
generate-and-test algorithms. The generate-and-test algorithms we tested up-
dated infrequently, were computationally cheap, and were untuned. Yet, the
performance gains of the continual backprop algorithms were great.
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6 Discussion

In this paper, we clearly demonstrated the weakness of backprop when adapting
an ANN on a sequence of different data distributions. Over many data distribu-
tions, the performance of the ANNs learned with backprop can perform worse
or only slightly better than a fixed random representation ANN. Using a Soft-
Sign activation function enabled backprop to adapt the ANN quicker than with
other activation functions, while using ReLU activation functions led backprop
to form an extremely poor representation that outputted a zero vector for all
inputs.

We sought to remedy this weakness of backprop by combining it with a
generate-and-test algorithm to form continual backprop. Although each generate-
and-test algorithm on their own performed similar or worse compared to a fixed
random representation ANN, the continual backprop algorithms demonstrated
the ability to quickly adapt ANNs on later data distributions. More work needs
to be done to establish reliable generators and testers, but continual backprop
algorithms can be greatly beneficial.
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7 Appendix

7.1 GDFC Task Calculations

A calculation can be done to determine how often a target feature will show up
on subsequent subtasks. Let i be the size of the binary input vector, and let t be
the number of target features. The number of unique target features with -1 and

1 weights is 2i and the number of unique target functions is (2i)t = 2ti. (2i−1
2i )t

is the probability a feature does not appear in a subtask’s target function which

makes 1− ( 2i−1
2i )t the probability the feature does appear in a subtask’s target

function. In our experiments, we set i = 7 and t = 2 making the probability a
given feature appears ∼ 0.016.

If we consider the probability of a target feature from the current subtask
reappearing in a subsequent subtask to be equal to p, then, in expectation,

the target feature will reappear on the 1
p

th
subtask after. This is because we

consider the target feature reappearance a Bernoulli process: X1, X2, X3, ...,
whereXs, s ∈ N, is a random variable equal to one if the target feature reappears
on the sth subtask after (P (Xs = 1) = p). Xs is equal to zero otherwise
(P (Xs = 0) = 1−p). For such a Bernoulli process, the expected earliest s when
Xs = 1 is i = 1/p. So, for our experiments, where p ∼ 0.016, target features are
expected to reappear every ∼ 64 subtasks.

7.2 Optimized Backprop Parameters

activation function (15 features) logistic tanh ReLU SoftSign
αr 0.2 0.025 0.05 0.1
αo 0.4/15 0.2/15 0.05/15 0.8/15

activation function (40 features) logistic tanh ReLU SoftSign
αr 1.6 0.2 0.0125 0.2
αo 0.2/40 0.4/40 0.4/40 0.8/40
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